Prediction of Bending Properties for 3D-Printed Carbon Fibre/Epoxy Composites with Several Processing Parameters Using ANN and Statistical Methods

Author:

Monticeli FranciscoORCID,Neves RobertaORCID,Ornaghi HeitorORCID,Almeida JoséORCID

Abstract

The effects of processing parameters on conventional molding techniques are well-known. However, the fabrication of a carbon fibre (CF)/epoxy composite via additive manufacturing (AM) is in the early development stages relative to fabrications based on resin infusion. Accordingly, we introduce predictions of the flexural strength, modulus, and strain for high-performance 3D printable CF/epoxy composites. The data prediction is analyzed using approaches based on an artificial neural network, analysis of variance, and a response surface methodology. The predicted results present high reliability and low error level, getting closer to experimental results. Different input data can be included in the system with the trained neural network, allowing for the prediction of different output parameters. The following factors that influence the AM composite processing were considered: vacuum pressure, printing speed, curing temperature, printing space, and thickness. We further demonstrate fast and streamlined fabrications of various composite materials with tailor-made properties, as the influence of each processing parameter on the desirable properties.

Funder

Royal Academy of Engineering

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3