Thermodynamic State Machine Network

Author:

Hylton ToddORCID

Abstract

We describe a model system—a thermodynamic state machine network—comprising a network of probabilistic, stateful automata that equilibrate according to Boltzmann statistics, exchange codes over unweighted bi-directional edges, update a state transition memory to learn transitions between network ground states, and minimize an action associated with fluctuation trajectories. The model is grounded in four postulates concerning self-organizing, open thermodynamic systems—transport-driven self-organization, scale-integration, input-functionalization, and active equilibration. After sufficient exposure to periodically changing inputs, a diffusive-to-mechanistic phase transition emerges in the network dynamics. The evolved networks show spatial and temporal structures that look much like spiking neural networks, although no such structures were incorporated into the model. Our main contribution is the articulation of the postulates, the development of a thermodynamically motivated methodology addressing them, and the resulting phase transition. As with other machine learning methods, the model is limited by its scalability, generality, and temporality. We use limitations to motivate the development of thermodynamic computers—engineered, thermodynamically self-organizing systems—and comment on efforts to realize them in the context of this work. We offer a different philosophical perspective, thermodynamicalism, addressing the limitations of the model and machine learning in general.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference55 articles.

1. AI and Compute https://openai.com/blog/ai-and-compute/

2. A vision to compute like nature

3. Thermodynamic Computing: An Intellectual and Technological Frontier;Hylton;Proceedings,2020

4. The Physical Aspect of the Living Cell;Schrödinger,1944

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermodynamic computing via autonomous quantum thermal machines;Science Advances;2024-09-06

2. Thermodynamic AI and the Fluctuation Frontier;2023 IEEE International Conference on Rebooting Computing (ICRC);2023-12-05

3. Editorial: Understanding in the human and the machine;Frontiers in Systems Neuroscience;2022-11-25

4. Entropy calculation for networks with determined values of flows in nodes;Mathematical Modeling and Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3