Thermodynamic computing via autonomous quantum thermal machines

Author:

Lipka-Bartosik Patryk1ORCID,Perarnau-Llobet Martí1ORCID,Brunner Nicolas1ORCID

Affiliation:

1. Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland.

Abstract

We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a nonequilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a “thermodynamic neuron,” can implement any linearly separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY, and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics-based analog implementation of neural networks, and more generally a platform for thermodynamic computing.

Publisher

American Association for the Advancement of Science (AAAS)

Reference84 articles.

1. The thermodynamics of computation—a review

2. Thermodynamics of information

3. The stochastic thermodynamics of computation

4. Information processing and the second law of thermodynamics: An inclusive, Hamiltonian approach;Deffner S.;Phys. Rev. X,2013

5. Thermodynamics of modularity: Structural costs beyond the Landauer bound;Boyd A. B.;Phys. Rev. X,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3