Spatial Gap-Filling of GK2A Daily Sea Surface Temperature (SST) around the Korean Peninsula Using Meteorological Data and Regression Residual Kriging (RRK)

Author:

Ahn Jihye,Lee YangwonORCID

Abstract

Satellite remote sensing can measure large ocean surface areas, but the infrared-based sea surface temperature (SST) might not be correctly calculated for the pixels under clouds, resulting in missing values in satellite images. Early studies for the gap-free raster maps of satellite SST were based on spatial interpolation using in situ measurements. In this paper, however, an alternative spatial gap-filling method using regression residual kriging (RRK) for the Geostationary Korea Multi-Purpose Satellite-2A (GK2A) daily SST was examined for the seas around the Korean Peninsula. Extreme outliers were first removed from the in situ measurements and the GK2A daily SST images using multi-step statistical procedures. For the pixels on the in situ measurements after the quality control, a multiple linear regression (MLR) model was built using the selected meteorological variables such as daily SST climatology value, specific humidity, and maximum wind speed. The irregular point residuals from the MLR model were transformed into a residual grid by optimized kriging for the residual compensation for the MLR estimation of the null pixels. The RRK residual compensation method improved accuracy considerably compared with the in situ measurements. The gap-filled 18,876 pixels showed the mean bias error (MBE) of −0.001 °C, the mean absolute error (MAE) of 0.315 °C, the root mean square error (RMSE) of 0.550 °C, and the correlation coefficient (CC) of 0.994. The case studies made sure that the gap-filled SST with RRK had very similar values to the in situ measurements to those of the MLR-only method. This was more apparent in the typhoon case: our RRK result was also stable under the influence of typhoons because it can cope with the abrupt changes in marine meteorology.

Funder

Korea Coast Guard

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3