Interpolation of China’s Nearshore Sea Surface Temperature Based on Information Diffusion with Small Sample Sizes

Author:

Wang Min,Shi Minghang,Xu Yongqi,Cao Xiaomeng,Gu Wenjie

Abstract

Abstract Addressing the issue of data sparsity and gaps caused by missing values, this study employs an information diffusion approach to effectively spread information from sparse sample points to monitoring locations. By thoroughly extracting insights from a limited dataset, it achieves more precise interpolation outcomes. To validate the superiority of the information diffusion interpolation technique under conditions of sparse samples, we utilize sea surface temperature (SST) data from the offshore waters of China as a case study. We compare three interpolation methods: Kriging, Gaussian information diffusion, and asymmetric information diffusion. The calculations and comparisons of interpolation results are conducted across varying sample sizes. The findings indicate that in situations with relatively sparse samples, asymmetric information diffusion yields the most favorable results, with Kriging and Gaussian diffusion exhibiting comparable performance. In cases of extremely sparse samples, asymmetric information diffusion yields the lowest interpolation error, followed by Gaussian diffusion, while Kriging performs the least effectively. Thus, when confronted with sample sparsity, the application of the information diffusion interpolation method can yield notably improved results.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3