Assessment of Fire Regimes and Post-Fire Evolution of Burned Areas with the Dynamic Time Warping Method on Time Series of Satellite Images—Setting the Methodological Framework in the Peloponnese, Greece

Author:

Koutsias NikosORCID,Karamitsou Anastasia,Nioti Foula,Coutelieris FrankORCID

Abstract

Forest fires are considered to be an important part of numerous terrestrial ecosystems and vegetation types, being also a significant factor of ecosystem disruption. In this sense, fires play an important role in the structure and function of the ecosystems. Biomes are characterized by a specific type of fire regime, which is a synergy of the climate conditions and the characteristics of the vegetation types dominating each biome. The assessment of burned areas and the identification of the fire regimes can be implemented with freely available low- to high-resolution satellite data as those of Landsat and Sentinel-2. Moreover, the biomes are characterized by the phenology, a useful component for vegetation monitoring, especially when time series of satellite images are used. Both the identification of fire regime by reconstructing the fire history and the monitoring of the post-fire evolution of burned areas were studied with remote sensing methods. Specifically, the present paper is a pilot study implemented in a Mediterranean biome, aimed at establishing the methodological framework to (i) define fire regimes, (ii) characterize the phenological pattern of the vegetation (pre-fire situation) of the fire-affected areas, and (iii) compare the phenology of the recovered fire-affected areas with the corresponding one of the pre-fire situation. At the global level, based on MODIS fire perimeters, we found that fires are occurring at 70% in the tropical and subtropical grasslands, savannas, and shrublands, followed by fires at tropical and subtropical moist broadleaf forests by 7% and by fires at deserts and xeric shrublands by 6.5%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3