Towards Classification of Architectural Styles of Chinese Traditional Settlements Using Deep Learning: A Dataset, a New Framework, and Its Interpretability

Author:

Han Qing,Yin ChaoORCID,Deng Yunyuan,Liu Peilin

Abstract

The classification of architectural style for Chinese traditional settlements (CTSs) has become a crucial task for developing and preserving settlements. Traditionally, the classification of CTSs primarily relies on manual work, which is inefficient and time consuming. Inspired by the tremendous success of deep learning (DL), some recent studies attempted to apply DL networks such as convolution neural networks (CNNs) to achieve automated classification of the architecture styles. However, these studies suffer overfitting problems of the CNNs, leading to inferior classification performance. Moreover, most of the studies apply the CNNs as a black box providing limited interpretability. To address these limitations, a new DL classification framework is proposed in this study to overcome the overfitting problem by transfer learning and learning-based data augmentation technique (i.e., AutoAugment). Furthermore, we also employ class activation map (CAM) visualization technique to help understand how the CNN classifiers work to abstract patterns from the input. Specifically, due to a lack of architectural style datasets for the CTSs, a new annotated dataset is first established with six representative classes. Second, several representative CNNs are leveraged to benchmark the new dataset. Third, to address the overfitting problem of the CNNs, a new DL framework is proposed which combines transfer learning and AutoAugment to improve the classification performance. Extensive experiments are conducted on the new dataset to demonstrate the effectiveness of our framework. The proposed framework achieves much better performance than baselines, greatly mitigating the overfitting problem. Additionally, the CAM visualization technique is harnessed to explain what and how the CNN classifiers implicitly learn for recognizing a specified architectural style.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangdong

GDAS’ Project of Science and Technology Development

Open Fund of National-Local Joint Engineering Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. China Intangible Cultural Heritage, China-Ich. (n.d.)

2. (n.d.)

3. Convention for the Safeguarding of the Intangible Cultural Heritage 2003

4. Preservation of China’s Intangible Cultural Heritage, EESD: The Encyclopedia of Education for Sustainable Development. (n.d.)

5. The Scope and Definitions of Heritage: From Tangible to Intangible

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3