A Transferable Learning Classification Model and Carbon Sequestration Estimation of Crops in Farmland Ecosystem

Author:

Wang Lijun,Bai YangORCID,Wang Jiayao,Qin Fen,Liu Chun,Zhou Zheng,Jiao Xiaohao

Abstract

Frequent agricultural activities in farmland ecosystems bring challenges to crop information extraction from remote sensing (RS) imagery. The accurate spatiotemporal information of crops serves for regional decision support and ecological assessment, such as disaster monitoring and carbon sequestration. Most traditional machine learning algorithms are not appropriate for prediction classification due to the lack of historical ground samples and poor model transfer capabilities. Therefore, a transferable learning model including spatiotemporal capability was developed based on the UNet++ model by integrating feature fusion and upsampling of small samples for Sentinel-2A imagery. Classification experiments were conducted for 10 categories from 2019 to 2021 in Xinxiang City, Henan Province. The feature fusion and upsampling methods improved the performance of the UNet++ model, showing lower joint loss and higher mean intersection over union (mIoU) values. Compared with the UNet, DeepLab V3+, and the pyramid scene parsing network (PSPNet), the improved UNet++ model exhibits the best performance, with a joint loss of 0.432 and a mIoU of 0.871. Moreover, the overall accuracy and macro F1 values of prediction classification results based on the UNet++ model are higher than 83% and 58%, respectively. Based on the reclassification rules, about 3.48% of the farmland was damaged in 2021 due to continuous precipitation. The carbon sequestration of five crops (including corn, peanuts, soybean, rice, and other crops) is estimated, with a total carbon sequestration of 2460.56, 2549.16, and 1814.07 thousand tons in 2019, 2020, and 2021, respectively. The classification accuracy indicates that the improved model exhibits a better feature extraction and transferable learning capability in complex agricultural areas. This study provides a strategy for RS semantic segmentation and carbon sequestration estimation of crops based on a deep learning network.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3