Developing a Dual-Stream Deep-Learning Neural Network Model for Improving County-Level Winter Wheat Yield Estimates in China

Author:

Huang HaiORCID,Huang JianxiORCID,Feng Quanlong,Liu Junming,Li XuecaoORCID,Wang Xinlei,Niu Quandi

Abstract

Accurate and timely crop yield prediction over large spatial regions is critical to national food security and sustainable agricultural development. However, designing a robust model for crop yield prediction over a large spatial region remains challenging due to inadequate surveyed samples and an under-development of deep-learning frameworks. To tackle this issue, we integrated multi-source (remote sensing, weather, and soil properties) data into a dual-stream deep-learning neural network model for winter wheat in China’s major planting regions. The model consists of two branches for robust feature learning: one for sequential data (remote sensing and weather series data) and the other for statical data (soil properties). The extracted features by both branches were aggregated through an adaptive fusion model to forecast the final wheat yield. We trained and tested the model by using official county-level statistics of historical winter wheat yields. The model achieved an average R2 of 0.79 and a root-mean-square error of 650.21 kg/ha, superior to the compared methods and outperforming traditional machine-learning methods. The dual-stream deep-learning neural network model provided decent in-season yield prediction, with an error of about 13% compared to official statistics about two months before harvest. By effectively extracting and aggregating features from multi-source datasets, the new approach provides a practical approach to predicting winter wheat yields at the county scale over large spatial regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3