Abstract
The 14C method is an approach used to determine the proportion of carbon derived from biomass and fossil fuel in the co-fired flue gas. Its accuracy is mainly limited by the deviations between the applied biomass fuels’ 14C activity reference value and virtual value. To enrich the theoretical basis of the 14C method when applied to a Chinese biomass and coal co-firing power station, this study performed field sampling experiments and established a new evaluation method based on domestic literature. Unlike previous studies, this study revealed that the 14C activity of biomass far away from fossil carbon sources was 0.7–1.3 pMC lower than the local atmosphere. The 14C activity laws between tree rings and barks, specifically between eucalyptus bark and poplar bark were different, due to different growth models and different bark regeneration cycles, respectively. According to the test results and renewal conclusions, this study proposed a reasonable idea for constructing the prediction equation of referential biomass fuels’ 14C activity. Following this equation, the biomass fuels’ 14C activities of biomass direct-fired power stations at different Chinese cities were obtained.
Funder
the U.S. National Science Foundation, namely, NSFC-NSF project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献