Combustion Characteristics and Kinetic Analysis of Biomass Pellet Fuel Using Thermogravimetric Analysis

Author:

Jia Guohai

Abstract

Biomass pellet fuel is one of the development directions of renewable energy. The purpose of the article is to study the combustion characteristics of five kinds of biomass pellet fuel that can be used as biomass fuel and analyze their combustion kinetics. The thermogravimetric method (TG method) was used to analyze the combustion characteristics of five kinds of biomass pellet fuel and to calculate the index S of comprehensive combustion characteristic. The Arrhenius equation and the Coats–Redfern method were used to analyze the combustion kinetics of five kinds of biomass pellet fuel. The activation energy and pre-exponential factor were obtained according to different temperature ranges. Conclusions are as follows: The pyrolysis of five kinds of biomass pellet fuel mainly includes three stages: (1) water evaporation stage, (2) volatile component combustion stage, (3) fixed carbon oxidation stage. The TG curves of five kinds of biomass pellet fuel are roughly the same at the same heating rate. The peaks of thermal weight loss rate and maximum degradation rate are both in the high temperature range. The differential thermal gravity (DTG) curves of five kinds of biomass pellet fuel have an obvious peak. The peak temperature of the largest peak in the DTG curves is 280–310 °C. The first-order reaction equation is used to obtain the kinetic parameters in stages. The correlation coefficients are bigger than the value of 0.92. The fitting results are in good agreement with the experimental results. The activation energy of each sample is basically the same in each stage. The value in the volatile matter combustion stage is 56–542 kJ/mol, and the activation energy of the carbon layer slowly increases rapidly. The five kinds of biomass pellet fuels have good combustion characteristics and kinetic characteristics, and they can be promoted and applied as biomass pellet fuels in the future.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3