An Integrated CNN Model for Reconstructing and Predicting Land Use/Cover Change: A Case Study of the Baicheng Area, Northeast China

Author:

Zhang YuboORCID,Yang Jiuchun,Wang Dongyan,Wang Jing,Yu LingxueORCID,Yan Fengqin,Chang Liping,Zhang Shuwen

Abstract

Land use and land cover change (LUCC) modeling has continuously been a major research theme in the field of land system science, which interprets the causes and consequences of land use dynamics. In particular, models that can obtain long-term land use data with high precision are of great value in research on global environmental change and climate impact, as land use data are important model input parameters for evaluating the effect of human activity on nature. However, the accuracy of existing reconstruction and prediction models is inadequate. In this context, this study proposes an integrated convolutional neural network (CNN) LUCC reconstruction and prediction model (CLRPM), which meets the demand for fine-scale LUCC reconstruction and prediction. This model applies the deep learning method, which far exceeds the performance of traditional machine learning methods, and uses CNN to extract spatial features and provide greater proximity information. Taking Baicheng city in Northeast China as an example, we verify that CLRPM achieved high-precision annual LUCC reconstruction and prediction, with an overall accuracy rate 9.38% higher than that of the existing models. Additionally, the error rate was reduced by 49.5%. Moreover, this model can perform multilevel LUCC classification category reconstructions and predictions. This study casts light on LUCC models within the high-precision and fine-grained LUCC categories, which will aid LUCC analyses and help decision-makers better understand complex land-use systems and develop better land management strategies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3