Abstract
In recent decades, land use/cover change (LUCC) due to urbanization, deforestation, and desertification has dramatically increased, which changes the global landscape and increases the pressure on the environment. LUCC not only accelerates global warming but also causes widespread and irreversible loss of biodiversity. Therefore, LUCC reconstruction has important scientific and practical value for studying environmental and ecological changes. The commonly used LUCC reconstruction models can no longer meet the growing demand for uniform and high-resolution LUCC reconstructions. In view of this circumstance, a deep learning-integrated LUCC reconstruction model (DLURM) was developed in this study. Zhenlai County of Jilin Province (1986–2013) was taken as an example to verify the proposed DLURM. The average accuracy of the DLURM reached 92.87% (compared with the results of manual interpretation). Compared with the results of traditional models, the DLURM had significantly better accuracy and robustness. In addition, the simulation results generated by the DLURM could match the actual land use (LU) map better than those generated by other models.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献