Modeling the Spatial Distribution of Debris Flows and Analysis of the Controlling Factors: A Machine Learning Approach

Author:

Zhao YanORCID,Meng XingminORCID,Qi Tianjun,Chen Guan,Li Yajun,Yue Dongxia,Qing FengORCID

Abstract

Debris flows are a major geological hazard in mountainous regions. For improving mitigation, it is important to study the spatial distribution and factors controlling debris flows. In the Bailong River Basin, central China, landslides and debris flows are very well developed due to the large differences in terrain, the complex geological environment, and concentrated rainfall. For analysis, 52 influencing factors, statistical, machine learning, remote sensing and GIS methods were used to analyze the spatial distribution and controlling factors of 652 debris flow catchments with different frequencies. The spatial distribution of these catchments was divided into three zones according to their differences in debris flow frequencies. A comprehensive analysis of the relationship between various factors and debris flows was made. Through parameter optimization and feature selection, the Extra Trees classifier performed the best, with an accuracy of 95.6%. The results show that lithology was the most important factor controlling debris flows in the study area (with a contribution of 26%), followed by landslide density and factors affecting slope stability (road density, fault density and peak ground acceleration, with a total contribution of 30%). The average annual frequency of daily rainfall > 20 mm was the most important triggering factor (with a contribution of 7%). Forest area and vegetation cover were also important controlling factors (with a total contribution of 9%), and they should be regarded as an important component of debris flow mitigation measures. The results are helpful to improve the understanding of factors influencing debris flows and provide a reference for the formulation of mitigation measures.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3