The Application of Remote Sensing Technology in Post-Disaster Emergency Investigations of Debris Flows: A Case Study of the Shuimo Catchment in the Bailong River, China

Author:

Huo Feibiao1,Guo Fuyun2,Shi Pengqing2,Gao Ziyan2,Zhao Yan3ORCID,Wang Yongbin1,Meng Xingmin3ORCID,Yue Dongxia1

Affiliation:

1. Key Laboratory of Western China’s Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. Geological Environment Monitoring Institute of Gansu Province, Lanzhou 730050, China

3. Gansu Technology & Innovation Center for Environmental Geology and Geohazards Prevention, Gansu Geohazards Field Observation and Research Station, School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

The Bailongjiang River Basin is a high-risk area for debris flow in China. On 17 August 2020, a debris flow occurred in the Shuimo catchment, Wen County, which blocked the Baishui River, forming a barrier lake and causing significant casualties and property damage. In this study, remote sensing, InSAR, field surveys, and unmanned aerial vehicle (UAV) techniques were used to analyze the causal characteristics, material source characteristics, dynamic processes, and disaster characteristics after the debris flow. The results showed that the Shuimo catchment belongs to low-frequency debris flows, with a recurrence cycle of more than 100 years and concealed features. High vegetation coverage (72%) and a long main channel (11.49 km) increase the rainfall-triggering conditions for debris flow occurrence, making it more hidden and less noticed. The Shuimo catchment has a large drainage area of 31.26 km2, 15 tributaries, significant elevation differences of 2017 m, and favorable hydraulic conditions for debris flow. The main sources of debris flow material supply are channel erosion and slope erosion, which account for 84.4% of the total material. The collapse of landslides blocking both sides of the main channel resulted in an amplification of the debris flow scale, leading to the blockage of the Baishui River. The scale of the accumulation fan is 28 × 104 m3, and the barrier lake area is 37.4 × 104 m2. The formation mechanism can be summarized as follows: rainfall triggering → shallow landslides → slope debris flow → channel erosion → landslide damming → dam failure and increased discharge → deposition and river blockage. The results of this study provide references for remote sensing emergency investigation and analysis of similar low-frequency and concealed debris flows, as well as a scientific basis for local disaster prevention and reduction.

Funder

National Key Research and Development Program of China

Major Scientific and Technological Projects of Gansu Province

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Construction Project of Gansu Technological Innovation Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3