Attention-Guided Multispectral and Panchromatic Image Classification

Author:

Shi Cheng,Dang Yenan,Fang LiORCID,Lv Zhiyong,Shen Huifang

Abstract

Multi-sensor image can provide supplementary information, usually leading to better performance in classification tasks. However, the general deep neural network-based multi-sensor classification method learns each sensor image separately, followed by a stacked concentrate for feature fusion. This way requires a large time cost for network training, and insufficient feature fusion may cause. Considering efficient multi-sensor feature extraction and fusion with a lightweight network, this paper proposes an attention-guided classification method (AGCNet), especially for multispectral (MS) and panchromatic (PAN) image classification. In the proposed method, a share-split network (SSNet) including a shared branch and multiple split branches performs feature extraction for each sensor image, where the shared branch learns basis features of MS and PAN images with fewer learn-able parameters, and the split branch extracts the privileged features of each sensor image via multiple task-specific attention units. Furthermore, a selective classification network (SCNet) with a selective kernel unit is used for adaptive feature fusion. The proposed AGCNet can be trained by an end-to-end fashion without manual intervention. The experimental results are reported on four MS and PAN datasets, and compared with state-of-the-art methods. The classification maps and accuracies show the superiority of the proposed AGCNet model.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3