Abstract
Multi-sensor image can provide supplementary information, usually leading to better performance in classification tasks. However, the general deep neural network-based multi-sensor classification method learns each sensor image separately, followed by a stacked concentrate for feature fusion. This way requires a large time cost for network training, and insufficient feature fusion may cause. Considering efficient multi-sensor feature extraction and fusion with a lightweight network, this paper proposes an attention-guided classification method (AGCNet), especially for multispectral (MS) and panchromatic (PAN) image classification. In the proposed method, a share-split network (SSNet) including a shared branch and multiple split branches performs feature extraction for each sensor image, where the shared branch learns basis features of MS and PAN images with fewer learn-able parameters, and the split branch extracts the privileged features of each sensor image via multiple task-specific attention units. Furthermore, a selective classification network (SCNet) with a selective kernel unit is used for adaptive feature fusion. The proposed AGCNet can be trained by an end-to-end fashion without manual intervention. The experimental results are reported on four MS and PAN datasets, and compared with state-of-the-art methods. The classification maps and accuracies show the superiority of the proposed AGCNet model.
Funder
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献