Mapping of Subtidal and Intertidal Seagrass Meadows via Application of the Feature Pyramid Network to Unmanned Aerial Vehicle Orthophotos

Author:

Chen Jundong,Sasaki JunORCID

Abstract

Seagrass meadows are one of the blue carbon ecosystems that continue to decline worldwide. Frequent mapping is essential to monitor seagrass meadows for understanding change processes including seasonal variations and influences of meteorological and oceanic events such as typhoons and cyclones. Such mapping approaches may also enhance seagrass blue carbon strategy and management practices. Although unmanned aerial vehicle (UAV) aerial photography has been widely conducted for this purpose, there have been challenges in mapping accuracy, efficiency, and applicability to subtidal water meadows. In this study, a novel method was developed for mapping subtidal and intertidal seagrass meadows to overcome such challenges. Ground truth seagrass orthophotos in four seasons were created from the Futtsu tidal flat of Tokyo Bay, Japan, using vertical and oblique UAV photography. The feature pyramid network (FPN) was first applied for automated seagrass classification by adjusting the spatial resolution and normalization parameters and by considering the combinations of seasonal input data sets. The FPN classification results ensured high performance with the validation metrics of 0.957 overall accuracy (OA), 0.895 precision, 0.942 recall, 0.918 F1-score, and 0.848 IoU, which outperformed the conventional U-Net results. The FPN classification results highlighted seasonal variations in seagrass meadows, exhibiting an extension from winter to summer and demonstrating a decline from summer to autumn. Recovery of the meadows was also detected after the occurrence of Typhoon No. 19 in October 2019, a phenomenon which mainly happened before summer 2020.

Funder

Japan Society for the Promotion of Science

The Japanese Institute of Fisheries Infrastructure and Communities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3