Abstract
AbstractSeagrasses provide critical ecosystem services but cumulative human pressure on coastal environments has seen a global decline in their health and extent. Key processes of anthropogenic disturbance can operate at local spatio-temporal scales that are not captured by conventional satellite imaging. Seagrass management strategies to prevent longer-term loss and ensure successful restoration require effective methods for monitoring these fine-scale changes. Current seagrass monitoring methods involve resource-intensive fieldwork or recurrent image classification. This study presents an alternative method using iteratively reweighted multivariate alteration detection (IR-MAD), an unsupervised change detection technique originally developed for satellite images. We investigate the application of IR-MAD to image data acquired using an unoccupied aerial vehicle (UAV). UAV images were captured at a 14-week interval over two seagrass beds in Brisbane Water, NSW, Australia using a 10-band Micasense RedEdge-MX Dual camera system. To guide sensor selection, a further three band subsets representing simpler sensor configurations (6, 5 and 3 bands) were also analysed using eight categories of seagrass change. The ability of the IR-MAD method, and for the four different sensor configurations, to distinguish the categories of change were compared using the Jeffreys-Matusita (JM) distance measure of spectral separability. IR-MAD based on the full 10-band sensor images produced the highest separability values indicating that human disturbances (propeller scars and other seagrass damage) were distinguishable from all other change categories. IR-MAD results for the 6-band and 5-band sensors also distinguished key seagrass change features. The IR-MAD results for the simplest 3-band sensor (an RGB camera) detected change features, but change categories were not strongly separable from each other. Analysis of IR-MAD weights indicated that additional visible bands, including a coastal blue band and a second red band, improve change detection. IR-MAD is an effective method for seagrass monitoring, and this study demonstrates the potential for multispectral sensors with additional visible bands to improve seagrass change detection.
Funder
Department of Education and Training | Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Hossain, M. S. & Hashim, M. Potential of earth observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 77, 15–29 (2019).
2. Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2020).
3. Unsworth, R. K. F., Cullen-Unsworth, L. C., Jones, B. L. H. & Lilley, R. J. The planetary role of seagrass conservation. Science 377, 609–613. https://doi.org/10.1126/science.abq6923 (2022).
4. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381 (2009).
5. Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).