A Highlight-Generation Method for Rendering Translucent Objects

Author:

Yu Hui,Liu Peter,Hu Lingyan

Abstract

The acquisition of translucent objects has become a very common task thanks to the progress of 3D scanning technology. Since the characteristic soft appearance of translucent objects is due to subsurface scattering, the details are naturally left out in this appearance. For objects that have complex shapes, this lack of detail is obviously more prominent. In this paper, we propose a method to preserve the details of surface geometry by adding highlight effects. In generating highlight effects, our method employs a local orthonormal frame and combines, in a novel way, the incoming and outgoing light in approximating the subsurface scattering process. When the incident illuminant direction changes from nearly overhead to nearly horizontal, our method effectively preserves complex surface geometry details in the appearance of translucent materials. Through experiments, we show that our method can store surface features as well as maintain the translucency of the original materials and even enhance the perception of translucency. By numerically comparing the generated highlight effects with those generated by the traditional Bidirectional Reflectance Distribution Function (BRDF) models with different bandwidth parameters, we demonstrate the validity of our proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on simulation method of visual and auditory multidimensional interaction in distributed environment;International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021);2022-03-18

2. Translucency perception: A review;Journal of Vision;2021-08-03

3. A highlight effects generation model for translucent materials perception based on directional subsurface scattering;Journal of Intelligent & Fuzzy Systems;2021-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3