A highlight effects generation model for translucent materials perception based on directional subsurface scattering

Author:

Yu Hui1,Hu Lingyan1

Affiliation:

1. School of Information Engineering, Nanchang University, Nanchang, Jiangxi, China

Abstract

Usually the highlights can be calculated with the specular term of the bidirectional reflectance distribution functions developed for glossy or matte materials. However, as for the translucent materials, complex appearance could be caused by the scattering of light inside the medium. An efficient highlight generation model is presented to simulate the highlight effects on smooth or rough surfaces or around the boundaries of objects made from translucent materials. The presented model is derived from the directional dipole model approximation of the diffusive part of the bidirectional scattering surface reflectance distribution function. Unlike the previous specular reflection models, the presented model builds a relationship between the highlights and the scattered lights inside the medium by considering the refracted ray of the incident point and the ray toward the emergent point, which could represent the variation in fluence due to the internal scattering at the surface. By integrating a rendering process with the directional dipole model, the resulting highlight effects term could be represented in a similar way by the specular term of a bidirectional reflectance distribution function model. The number and the strength of the generated highlight pixels were compared among typical highlight generation models. It is demonstrated that the presented model could generate highlight effects at the appropriate positions and enhance the perceptual translucency of specific edge areas greatly.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

1. A 3D face animation system for mobile devices;Mendi;Journal of Intelligent & Fuzzy Systems,2014

2. An Inexpensive BRDF Model for Physically-based Rendering;Schlick;Comput Graph Forum,1994

3. Practical multiple scattering for rough surfaces;Lee;ACM Trans Graph,2019

4. Multiple scattering from distributions of specular v-grooves;Xie;ACM Trans Graph,2019

5. Multiple-scattering microfacet BSDFs with the Smith model;Heitz;ACM Trans Graph,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3