Monitoring Land-Use/Land-Cover Changes at a Provincial Large Scale Using an Object-Oriented Technique and Medium-Resolution Remote-Sensing Images

Author:

Luo KaishengORCID,Li Bingjuan,Moiwo Juana

Abstract

An object-based image analysis (OBIA) technique is replacing traditional pixel-based methods and setting a new standard for monitoring land-use/land-cover changes (LUCC). To date, however, studies have focused mainly on small-scale exploratory experiments and high-resolution remote-sensing images. Therefore, this study used OBIA techniques and medium-resolution Chinese HJ-CCD images to monitor LUCC at the provincial scale. The results showed that while woodland was mainly distributed in the west, south, and east mountain areas of Hunan Province, the west had the largest area and most continuous distribution. Wetland was distributed mainly in the northern plain area, and cultivated land was distributed mainly in the central and northern plains and mountain valleys. The largest impervious surface was the Changzhutan urban agglomerate in the northeast plain area. The spatial distribution of land cover in Hunan Province was closely related to topography, government policy, and economic development. For the period 2000–2010, the areas of cultivated land transformed into woodland, grassland, and wetland were 183.87 km2, 5.57 km2, and 70.02 km2, respectively, indicating that the government-promoted ecologically engineered construction was yielding some results. The rapid economic growth and urbanization, high resource development intensity, and other natural factors offset the gains made in ecologically engineered construction and in increasing forest and wetland areas, respectively, by 229.82 km2 and 132.12 km2 from 2000 to 2010 in Hunan Province. The results also showed large spatial differences in change amplitude (LUCCA), change speed (LUCCS), and transformation processes in Hunan Province. The Changzhutan urban agglomerate and the surrounding prefectures had the largest LUCCA and LUCCS, where the dominant land cover accounted for the conversion of some 189.76 km2 of cultivated land, 129.30 km2 of woodland, and 6.12 km2 of wetland into impervious surfaces in 2000–2010. This conversion was attributed to accelerated urbanization and rapid economic growth in this region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3