A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications

Author:

El-Masry Jamil FadiORCID,Bou-Hamdan Kamel FahmiORCID,Abbas Azza Hashim,Martyushev Dmitriy A.ORCID

Abstract

Chemicals are a pivotal part of many operations for the oil and gas industry. The purpose of chemical application in the subsurface reservoir is to decrease the mobility ratio between the displaced fluid and the displacing one or to increase the capillary number. These have been the favorable mechanisms for Enhanced Oil Recovery (EOR). Recently, it became a mainstay with EOR researchers looking for effective and efficient materials that can be economically feasible and environmentally friendly. Therefore, when the development of chemicals reached a peak point by introducing nanosized materials, it was of wondrous interest in EOR. Unlike other sizes, nanoparticles display distinct physical and chemical properties that can be utilized for multiple applications. Therefore, vast amounts of nanoparticles were examined in terms of formulation, size effect, reservoir condition, viscosity, IFT, and wettability alteration. When a holistic understanding of nanoparticles is aimed, it is necessary to review the recent studies comprehensively. This paper reviews the most recently published papers for nanoparticles in oil in general, emphasizing EOR, where most of these publications are between the years 2018 and 2022. It covers a thorough comparison of using nanoparticles in different EOR techniques and the expected range of oil recovery improvements. Moreover, this paper highlights the gaps existing in the field-scale implementation of NPs in EOR and opens space for research and development. The findings of this review paper suggest that the selection of the best NPs type for an EOR application is critical to the reservoir rock properties and conditions, reservoir fluids type, EOR mechanism, chemicals type (surfactant/polymer/alkaline), chemicals concentration used in the flooding process, and NPs properties and concentration.

Funder

President of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3