Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins

Author:

Gad Mohammed M.ORCID,Alshehri Saleh Z.,Alhamid Shahad A.,Albarrak Alanoud,Khan Soban Q.,Alshahrani Faris A.ORCID,Alqarawi Firas K.

Abstract

This study aimed to evaluate the water sorption, solubility, and translucency of 3D-printed denture base resins (NextDent, FormLabs, and Asiga), compare them to heat-polymerized acrylic denture base resins, and assess their performance under the effects of thermal cycling. A total of 80 acrylic disc specimens were used in the current study, categorized into four groups (n = 10); in one group, the samples were fabricated conventionally with a heat-polymerizing process (control), while the other three groups were fabricated digitally from different 3D-printed reins (NextDent, FormLabs, and Asiga). Specimens were fabricated according to the manufacturers’ recommendations and immersed in distilled water for 48 h at 37 °C. Data on water sorption, solubility, and translucency measurements (T1) were obtained. All the specimens were subjected to 5000 thermal cycles, and then the measures were repeated using the same method (T2). Data analysis was attained via ANOVA and the post hoc Tukey test (α = 0.05). The type of resin significantly affected the values of water sorption, solubility, and translucency (p < 0.001). The water sorption of 3D-printed resins was increased significantly in comparison to control with or without a thermal cycling effect. In terms of solubility, a significant increase in 3D-printed resins before thermocycling was observed; however, after thermocycling, Asiga had a significantly low value compared to the other groups (p < 0.001). Thermal cycling increased the water sorption and solubility of all tested materials. In comparison to control, the translucency of the 3D-printed resins was significantly decreased (p < 0.001). The translucency was significantly decreased per material in terms of the thermal cycling effect (before and after). NextDent showed significantly low translucency values (p < 0.001) compared to the other groups. All 3D-printed resin groups had higher water sorption and solubility and lower translucency values in comparison to the heat-polymerized resin group. Regardless of resin types, thermal cycling adversely affected all tested properties.

Publisher

MDPI AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3