Recombinant Human CD19 in CHO-K1 Cells: Glycosylation Patterns as a Quality Attribute of High Yield Processes

Author:

Billerhart Magdalena1ORCID,Hunjadi Monika1ORCID,Hawlin Vanessa1,Grünwald-Gruber Clemens2,Maresch Daniel2,Mayrhofer Patrick1,Kunert Renate1

Affiliation:

1. Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria

2. BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria

Abstract

CD19 is an essential protein in personalized CD19-targeting chimeric antigen receptor (CAR)-T cell-based cancer immunotherapies and CAR-T cell functionality evaluation. However, the recombinant expression of this “difficult to-express” (DTE) protein is challenging, and therefore, commercial access to the protein is limited. We have previously described the successful stable expression of our soluble CD19-AD2 fusion protein of the CD19 extracellular part fused with human serum albumin domain 2 (AD2) in CHO-K1 cells. The function, stability, and secretion rate of DTE proteins can be improved by culture conditions, such as reduced temperature and a shorter residence time. Moreover, glycosylation, as one of the most important post-translational modifications, represents a critical quality attribute potentially affecting CAR-T cell effector function and thus impacting therapy’s success. In this study, we increased the production rate of CD19-AD2 by 3.5-fold through applying hypothermic culture conditions. We efficiently improved the purification of our his-tagged CD19-AD2 fusion protein via a Ni-NTA-based affinity column using a stepwise increase in the imidazole concentration. The binding affinity to commercially available anti-CD19 antibodies was evaluated via Bio-Layer Interferometry (BLI). Furthermore, we revealed glycosylation patterns via Electrospray Ionization Mass Spectrometry (ESI–MS), and five highly sialylated and multi-antennary N-glycosylation sites were identified. In summary, we optimized the CD19-AD2 production and purification process and were the first to characterize five highly complex N-glycosylation sites.

Funder

platform for advanced cellular therapies

Austrian Science Fund

BOKU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3