MicroRNA PC-3p-2869 Regulates Antler Growth and Inhibits Proliferation and Migration of Human Osteosarcoma and Chondrosarcoma Cells by Targeting CDK8, EEF1A1, and NTN1

Author:

Yang Fan1,Wu Jin1ORCID,Zhao Mindie1,Zheng Han2,Suo Jingyuan1,Liu Xuedong1,Zheng Dong1

Affiliation:

1. Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China

2. Biotechnology Program, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA

Abstract

MicroRNAs (miRNAs) play a crucial role in maintaining the balance between the rapid growth and suppression of tumorigenesis during antler regeneration. This study investigated the role of a novel miRNA, PC-3p-2869 (miR-PC-2869), in antler growth and its therapeutic potential in human osteosarcoma and chondrosarcoma. Stem-loop RT-qPCR showed that miR-PC-2869 was expressed extensively in diverse layers of antler tissues. Overexpression of miR-PC-2869 suppressed the proliferation and migration of antler cartilage cells. Similarly, heterologous expression of miR-PC-2869 reduced the proliferation, colony formation, and migration of osteosarcoma cell line MG63 and U2OS and chondrosarcoma cell line SW1353. Moreover, 18 functional target genes of miR-PC-2869 in humans were identified based on the screening of the reporter library. Among them, 15 target genes, including CDK8, EEF1A1, and NTN1, possess conserved miR-PC-2869-binding sites between humans and red deer (Cervus elaphus). In line with this, miR-PC-2869 overexpression decreased the expression levels of CDK8, EEF1A1, and NTN1 in MG63, SW1353, and antler cartilage cells. As expected, the knockdown of CDK8, EEF1A1, or NTN1 inhibited the proliferation and migration of MG63, SW1353, and antler cartilage cells, demonstrating similar suppressive effects as miR-PC-2869 overexpression. Furthermore, we observed that CDK8, EEF1A1, and NTN1 mediated the regulation of c-myc and cyclin D1 by miR-PC-2869 in MG63, SW1353, and antler cartilage cells. Overall, our work uncovered the cellular functions and underlying molecular mechanism of antler-derived miR-PC-2869, highlighting its potential as a therapeutic candidate for bone cancer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3