The Influence of Lead and Acyrthosiphon pisum (Harris) on Generation of Pisum sativum Defense Signaling Molecules and Expression of Genes Involved in Their Biosynthesis

Author:

Woźniak Agnieszka1ORCID,Kęsy Jacek2,Glazińska Paulina2ORCID,Glinkowski Wojciech2,Narożna Dorota3,Bocianowski Jan4ORCID,Rucińska-Sobkowiak Renata5,Mai Van Chung6,Krzesiński Włodzimierz7,Samardakiewicz Sławomir8,Borowiak-Sobkowiak Beata9ORCID,Labudda Mateusz10ORCID,Jeandet Philippe11ORCID,Morkunas Iwona1ORCID

Affiliation:

1. Department of Plant Physiology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland

2. Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland

3. Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland

4. Department of Mathematical and Statistical Methods, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland

5. Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland

6. Department of Biology and Application, Faculty of Biology, Vinh University, Le Duan 182, 43108 Vinh, Nghe An Province, Vietnam

7. Department of Vegetable Crops, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznan, Poland

8. Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland

9. Department of Entomology and Environmental Protection, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznan, Poland

10. Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

11. Research Unit “Induced Resistance and Plant Bioprotection”, RIBP USC-INRAe 1488, University of Reims, 51100 Reims, France

Abstract

The main aim of this study was to understand the regulation of the biosynthesis of phytohormones as signaling molecules in the defense mechanisms of pea seedlings during the application of abiotic and biotic stress factors. It was important to identify this regulation at the molecular level in Pisum sativum L. seedlings under the influence of various concentrations of lead—i.e., a low concentration increasing plant metabolism, causing a hormetic effect, and a high dose causing a sublethal effect—and during feeding of a phytophagous insect with a piercing-sucking mouthpart—i.e., pea aphid (Acyrthosiphon pisum (Harris)). The aim of the study was to determine the expression level of genes encoding enzymes of the biosynthesis of signaling molecules such as phytohormones—i.e., jasmonates (JA/MeJA), ethylene (ET) and abscisic acid (ABA). Real-time qPCR was applied to analyze the expression of genes encoding enzymes involved in the regulation of the biosynthesis of JA/MeJA (lipoxygenase 1 (LOX1), lipoxygenase 2 (LOX2), 12-oxophytodienoate reductase 1 (OPR1) and jasmonic acid-amido synthetase (JAR1)), ET (1-aminocyclopropane-1-carboxylate synthase 3 (ACS3)) and ABA (9-cis-epoxycarotenoid dioxygenase (NCED) and aldehyde oxidase 1 (AO1)). In response to the abovementioned stress factors—i.e., abiotic and biotic stressors acting independently or simultaneously—the expression of the LOX1, LOX2, OPR1, JAR1, ACS3, NCED and AO1 genes at both sublethal and hormetic doses increased. Particularly high levels of the relative expression of the tested genes in pea seedlings growing at sublethal doses of lead and colonized by A. pisum compared to the control were noticeable. A hormetic dose of lead induced high expression levels of the JAR1, OPR1 and ACS3 genes, especially in leaves. Moreover, an increase in the concentration of phytohormones such as jasmonates (JA and MeJA) and aminococyclopropane-1-carboxylic acid (ACC)-ethylene (ET) precursor was observed. The results of this study indicate that the response of pea seedlings to lead and A. pisum aphid infestation differed greatly at both the gene expression and metabolic levels. The intensity of these defense responses depended on the organ, the metal dose and direct contact of the stress factor with the organ.

Funder

the National Science Centre, Poland

Polish Ministry of Science and Higher Education’s program “Regional Excellence Initiative”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3