Development of an Electronic Stethoscope and a Classification Algorithm for Cardiopulmonary Sounds

Author:

Wu Yu-ChiORCID,Han Chin-Chuan,Chang Chao-Shu,Chang Fu-Lin,Chen Shi-Feng,Shieh Tsu-Yi,Chen Hsian-MinORCID,Lin Jin-Yuan

Abstract

With conventional stethoscopes, the auscultation results may vary from one doctor to another due to a decline in his/her hearing ability with age or his/her different professional training, and the problematic cardiopulmonary sound cannot be recorded for analysis. In this paper, to resolve the above-mentioned issues, an electronic stethoscope was developed consisting of a traditional stethoscope with a condenser microphone embedded in the head to collect cardiopulmonary sounds and an AI-based classifier for cardiopulmonary sounds was proposed. Different deployments of the microphone in the stethoscope head with amplification and filter circuits were explored and analyzed using fast Fourier transform (FFT) to evaluate the effects of noise reduction. After testing, the microphone placed in the stethoscope head surrounded by cork is found to have better noise reduction. For classifying normal (healthy) and abnormal (pathological) cardiopulmonary sounds, each sample of cardiopulmonary sound is first segmented into several small frames and then a principal component analysis is performed on each small frame. The difference signal is obtained by subtracting PCA from the original signal. MFCC (Mel-frequency cepstral coefficients) and statistics are used for feature extraction based on the difference signal, and ensemble learning is used as the classifier. The final results are determined by voting based on the classification results of each small frame. After the testing, two distinct classifiers, one for heart sounds and one for lung sounds, are proposed. The best voting for heart sounds falls at 5–45% and the best voting for lung sounds falls at 5–65%. The best accuracy of 86.9%, sensitivity of 81.9%, specificity of 91.8%, and F1 score of 86.1% are obtained for heart sounds using 2 s frame segmentation with a 20% overlap, whereas the best accuracy of 73.3%, sensitivity of 66.7%, specificity of 80%, and F1 score of 71.5% are yielded for lung sounds using 5 s frame segmentation with a 50% overlap.

Funder

Ministry of Science and Technology, Taiwan

Taichung Veterans General Hospital, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Acoustic-Vibratory Sensor Inspired by the Ear Bones of Sea Turtles for Heart Sound Detection;IEEE Sensors Journal;2024-05-15

2. Clinical decision support system using a machine learning model to assist simultaneous cardiopulmonary auscultation: Open-label randomized controlled trial;DIGITAL HEALTH;2024-01

3. Design and Development of Digital Stethoscope;2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET);2023-12-21

4. Automated differential diagnostics of respiratory diseases using an electronic stethoscope;Polish Journal of Medical Physics and Engineering;2023-12-01

5. Smart Stethoscope for Remote Healthcare Monitoring Using IoT: A Cost-Effective Solution;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3