Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation

Author:

Liu YuanORCID,Zhu Ming,Wang Jing,Guo Xiangji,Yang Yifan,Wang Jiarong

Abstract

In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.

Funder

Science and Technology Department of Jilin Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3