Spatial Water Consumption Test and Analysis of Various Typical Vegetation in the Sanjiangyuan Region

Author:

Qu Liuyan12,Jia Shaofeng12ORCID,Li Runjie13

Affiliation:

1. Qinghai Provincial Key Laboratory of Physical Geography and Environmental Processes, School of Geographical Sciences, Qinghai Normal University, Xining 810008, China

2. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

Abstract

Vegetation water consumption in the Sanjiangyuan Region is of direct significance to the utilization of local water resources. To measure the actual evapotranspiration of various typical vegetation with different vegetation types in the Sanjiangyuan Region, a Lysimeter was used between November 2019 and October 2020. Additionally, the Penman–Monteith equation was used to estimate the condensation water of different vegetation types. Based on the measured data, this paper analyzes the spatial distribution of annual water consumption and annual runoff of various vegetation types. Furthermore, the spatial and temporal distribution of monthly water consumption of vegetation types on different underlying surfaces are discussed. To establish the relationship between the precipitation and runoff of various vegetation types, an artificial rainfall test was conducted. This study’s results reveal several key findings: (1) Condensation water is widespread and can be observed throughout the year. The annual condensation water volume ranges between 28.47 and 56.88 mm, which is particularly significant for the growth of alpine desert steppe and alpine steppe vegetation. (2) The annual water consumption in the Sanjiangyuan Region was higher in the south than in the north. Shrub water consumption was found to be 58.1–73.3 mm higher than that of grasses. Water consumption primarily occurred during the growing season, spanning from May to October. (3) The total water consumption in the growing season of the alpine meadow was less affected by precipitation compared to the non-growing season (from November to the next April). (4) The runoff yield can be ignored in the non-growing season when calculating water balance. However, during the growing season, the calculation of runoff cannot be ignored due to its significant impact on vegetation water consumption.

Funder

Qinghai Sanjiangyuan Ecological Protection and Construction Phase II Project Research and Promotion

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3