Application of A Simple Landsat-MODIS Fusion Model to Estimate Evapotranspiration over A Heterogeneous Sparse Vegetation Region

Author:

Jamshidi Sajad,Zand-Parsa Shahrokh,Naghdyzadegan Jahromi Mojtaba,Niyogi DevORCID

Abstract

A simple Landsat-MODIS (Moderate Resolution Imaging Spectroradiometer) fusion model was used to generate 30-m resolution evapotranspiration (ET) maps for the 2010 growing season over a heterogeneous sparse vegetation, agricultural region using the METRIC (mapping evapotranspiration with internalized calibration) algorithm. The fusion model performance was evaluated, and experiments were undertaken to investigate the frequency for updating Landsat-MODIS data into the fusion model during the growing season, to maintain model accuracy and reduce computation. Initial evaluation of the fusion model resulted in high bias stemming from the landscape heterogeneity and small landholdings. To reduce the bias, the fusion model was modified to be applicable pixel-wise (i.e., implementing specific pixels for generating outputs), and an NDVI-based (Normalized Difference Vegetation Index) coefficient was added to capture crop phenology. A good agreement that resulted from the comparison of the fused and non-fused maps with root mean square error (RMSE) of 0.15 mm day−1 with coefficient of determination (R2) of 0.83 indicated successful implementation of the modifications. Additionally, the fusion model performance was evaluated against in-situ observation at the pixel level as well as the watershed level to estimate seasonal ET for the growing season. The default METRIC model (Landsat only) yielded relative error (RE) of 31% and RMSE of 2.44 mm day−1, while using the modified fusion model improved the accuracy resulting in RE of 3.5% with RMSE of 0.37 mm day−1. Considering different data frequency update, the optimal fusion experiment (RMSE of 0.61 mm day−1, and RE of 6.5%) required the consideration of the crop phenology and weekly updates in the early growing stage and harvest time, and bi-weekly for the rest of the season. The resulting fusion model for ET output is planned to be a part of ET mapping and irrigation scheduling systems.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3