Mechanical Analysis of Palm-Fiber-Reinforced Sand through Triaxial Tests

Author:

Tang Yuxiao1,Wei Shaowei23,Liu Xueyan1ORCID,Liu Wen1,Liu Teng4

Affiliation:

1. Department of Civil Engineering, School of Water and Soil Conservation, Beijing Forestry University, Beijing 100083, China

2. China Academy of Railway Sciences, Institute of Railway Architecture, Beijing 100081, China

3. Beijing Tieke Special Engineering Technology Co., Ltd., Beijing 100081, China

4. Beijing Municipal Construction Co., Ltd., Beijing 100079, China

Abstract

Triaxial tests were employed to investigate palm-fiber-reinforced sand under consolidated drained conditions in this study. Sixteen series of triaxial tests were carried out to investigate the properties of palm-fiber-reinforced sand. One series of pure sand was also employed for comparison. The deviator stress, stress path, shear strength, volume change, void ratio, and enhanced coefficient of fiber-reinforced sand were studied with different fiber lengths varying from 8 mm to 20 mm and fiber contents varying in mass from 0.3% to 0.9%. The test results indicate that palm fibers were beneficial for enhancing the shear strength of the sand. Compared to the peak shear strength increase of about 10% to 20%, the critical shear strength increased much more, by a little over 100%. Therefore, the fibers played a key role in enhancing the critical shear strength of the sand but not the peak shear strength of the sand. The addition of fiber to sand resulted in prolongation of the axial strain required to reach the critical void ratio and improved the sand’s ability to resist larger deformations, enhancing its toughness. Furthermore, the critical shear strength of the sand was positively correlated with both fiber content and fiber length, and the axial strain required to reach the critical shear strength increased with increasing fiber content and length. This study provides valuable experimental data and serves as a reference for temporary reinforcement in geotechnical engineering.

Funder

National Natural Science Foundation of China

Beijing Municipal Construction Co., Ltd

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3