Fiber Solidification Treatment of River and Lake Wastewater and Sediments: Deformation Characteristics and Microscopic Mechanism Research

Author:

Yang Aiwu1,Xu Jian1,Gu Yuhao1,Li Fengjun2,Liu Xiaoqiang3,Hou Jinfang4

Affiliation:

1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2. Anhui Ronggong Boda Environmental Protection Technology and Materials Research Institute Co., Ltd., Ma’anshan 243002, China

3. Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China

4. CCCC Tianjin Port Engineering Institute Co., Ltd., Tianjin 300222, China

Abstract

River and lake dredging projects inevitably produce significant quantities of wastewater and sediment. This accumulation results in dredged soil with high moisture content, characterized by low strength, rendering it unsustainable for use. To facilitate environmentally friendly utilization of wastewater and sediment, solidifying agents and basalt fibers are introduced to solidify the wastewater within the dredged sediment. This process transforms the wastewater, sediment, solidifying agents, and basalt fibers into a novel, strengthened material. This transformation allows for their application as stabilized soil for engineering endeavors. Indoor experiments and scanning electron microscope analyses were performed to examine the deformation characteristics of fiber-stabilized soil and analyze its micro-mechanisms. Research findings suggest that as the curing age increases, the curing agent’s reaction becomes more comprehensive. Fibers have the potential to ameliorate soil damage. The proposed binary-medium model’s applicability and accuracy were validated through the analysis of triaxial test results employing the reinforcement principle. These findings establish a theoretical foundation for the resourceful utilization of wastewater and sediment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3