Performance and Consistency of Final Global Ionospheric Maps from Different IGS Analysis Centers

Author:

Li Wei1,Wang Keke1,Yuan Kaitian1

Affiliation:

1. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China

Abstract

Ionospheric delay is one of the most problematic errors in satellite-based positioning data processing. The Global Ionospheric Map (GIM), which is publicly available daily in various analysis centers, is thus vitally important for positioning users. There are variations in the accuracy and consistency of GIMs issued by Ionosphere Associate Analysis Centers (IAACs) due to the differences in ionospheric modeling methods and selected tracking stations. In this study on the International GNSS Service’s (IGS) final GIM, the ionospheric total electron content (TEC) (from 243 global navigation satellite system (GNSS) monitoring stations around the world) and the ionospheric TEC (from the Jason-3 altimeter satellite) are selected as reference. By using these three references, we evaluate the performance and consistency of final GIM products from seven IGS IAACs, including the Chinese Academy of Sciences (CAS), the Center for Orbit Determination in Europe (CODE), Natural Resources Canada (EMR), the European Space Agency (ESA), the Jet Propulsion Laboratory (JPL), Universitat Politècnica de Catalunya (UPC), and Wuhan University (WHU) in the mid-solar activity year (2022) and the low-solar activity year (2020). Firstly, the comparison with the IGS final GIM shows that the consistency of each GIMs is basically the same, with the mean value ranging from −0.3 TECu (total electron content unit) to 1.4 TECu. Secondly, the validation with Jason-3 altimeter satellite shows that the accuracy of several GIMs is almost the same, except for the JPL with the worst accuracy and an overall mean deviation (BIAS) between 2 and 6 TECu. Thirdly, the comparison with VTEC extracted from GNSS monitor stations shows that the CAS has the best accuracy in different latitude bands with a root mean square (RMS) of about 2.2–4.7 TECu. In addition, it is found that the accuracy in areas with more stations for ionospheric modelling is better than those with less stations in different latitude bands; meanwhile, the accuracy is closely related to the modeling methods of different GIMs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users;Klobuchar;IEEE Trans. Aerosp. Electron. Syst.,1987

2. The IGS VTEC maps: A reliable source of ionospheric information since 1998;Juan;J. Geod.,2009

3. Feltens, J., and Schaer, S.S. (1998, January 9–11). IGS Products for the Ionosphere. Proceedings of the IGS AC Workshop, Darmstadt, Germany.

4. The activities of the Ionosphere Working Group of the International GPS Service (IGS);Feltens;GPS Solut.,2003

5. Schaer, S. (1999). Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Schweizerische Geodätische Kommission.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3