Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms

Author:

Gulyaeva Tamara1ORCID,Hernández-Pajares Manuel2ORCID,Stanislawska Iwona3ORCID

Affiliation:

1. The Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow 108840, Russia

2. Department of Mathematics, Universitat Politècnica de Catalunya—IOnospheric Determination and Navigation Based on Satellite and Terrestrial Systems (UPC-IonSAT), 08034 Barcelona, Spain

3. Space Research Center, Polish Academy of Sciences, 00-716 Warsaw, Poland

Abstract

The launch of a series of Starlink internet satellites on 3 February 2022 (S-36), and 7 July 2022 (S-49), coincided with the development of two-phase geomagnetic storms. The first launch S-36 took place in the middle of the moderate two-phase space weather storm, which induced significant technological consequences. After liftoff on 3 February at 18:13 UT, all Starlink satellites reached an initial altitude of 350 km in perigee and had to reach an altitude of ~550 km after the maneuver. However, 38 of 49 launched spacecrafts did not reach the planned altitude, left orbit due to increased drag and reentered the atmosphere on 8 February. A geomagnetic storm on 3–4 February 2022 has increased the density of the neutral atmosphere up to 50%, increasing drag of the satellites and dooming most of them. The second launch of S-49 at 13:11 UT on 7 July 2022 was successful at the peak of the two-phase geomagnetic storm. The global ionospheric maps of the total electron content (GIM-TEC) have been used to produce the ionospheric weather GIM-W index maps and Global Electron Content (GEC). We observed a GEC increment from 10 to 24% for the storm peak after the Starlink launch at both storms, accompanying the neutral density increase identified earlier. GIM-TEC maps are available with a lag (delay) of 1–2 days (real-time GIMs have a lag less than 15 min), so the GIMs forecast is required by the time of the launch. Comparisons of different GIMs forecast techniques are provided including the Center for Orbit Determination in Europe (CODE), Beijing (BADG and CASG) and IZMIRAN (JPRG) 1- and 2-day forecasts, and the Universitat Politecnica de Catalunya (UPC-ionSAT) forecast for 6, 12, 18, 24 and 48 h in advance. We present the results of the analysis of evolution of the ionospheric parameters during both events. The poor correspondence between observed and predicted GIM-TEC and GEC confirms an urgent need for the industry–science awareness of now-casting/forecasting/accessibility of GIM-TECs during the space weather events.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Pultarova, T. (2023, July 31). Wild Solar Weather is Causing Satellites to Plummet from Orbit. Space 2022. Available online: https://www.space.com/satellites-falling-off-sky-solar-weather.

2. SpaceX—Sailing close to the space weather?;Hapgood;Space Weather,2022

3. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022;Kataoka;J. Space Weather Space Clim.,2022

4. Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022;Dang;Space Weather,2022

5. Space weather environment during the SpaceX Starlink satellite loss in February 2022;Fang;Space Weather,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3