Dynamic Habitat Indices and Climatic Characteristics Explain Species Richness Patterns on the Mongolian Plateau

Author:

Liu Yingbin12,Yang Yaping234,Yue Xiafang234,Chen Xiaona234ORCID,Liu Yangxiaoyue234ORCID

Affiliation:

1. School of Geographic Sciences, Nanjing Normal University, Nanjing 210023, China

2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China

3. National Earth System Science Data Center, National Science & Technology Infrastructure, Beijing 100101, China

4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

Abstract

Global climate change affects biodiversity patterns, especially in arid and semi-arid regions such as the Mongolian plateau, one of the most ecologically fragile regions in the world. Three dynamic habitat indices (DHIs) were related to the productivity hypothesis and calculated based on FAPAR, including cumulative productivity (DHIcum indicates the availability of resources such as food supply and habitat in a year, representing available energy), minimum productivity (DHImin indicates the limitations of food and habitat resources in a year, representing environmental stress), and seasonal productivity (DHIsea denotes the change in productivity in a year, representing environmental stability). In this paper, we investigated the distribution pattern of species richness on the Mongolian Plateau based on the productivity hypothesis. We constructed models of the richness of three species (mammals, birds, and amphibians) using DHIs and climate variables to explain patterns of species richness on the Mongolian Plateau. The results revealed that, on the Mongolian plateau, there is a relatively high correlation between DHIs and species richness, especially with DHIcum (R = 0.59 for mammals, R = 0.73 for birds, and R = 0.58 for amphibians). There was a significant non-linear relationship between DHIs and species richness, as the model predictive power was significantly enhanced with GAM and RF. The inclusion of climate variables significantly improved the explanatory power of various models for the mammal, bird, and amphibian species richness on the Mongolian Plateau, with the best results for RF (0.89, 0.94, and 0.91, respectively). The influence of climate variables on species richness patterns in the importance ranking was higher than that of DHIs. Climate also has an influence on species richness. Vegetation productivity and climatic factors are good determinants of species richness on the Mongolian Plateau and should be carefully considered in future studies.

Funder

Comprehensive investigation of resources and environmental elements of the Mongolian Plateau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3