Author:
Li Chuanhua,Li Liangliang,Wu Xiaodong,Tsunekawa Atsushi,Wei Yufei,Liu Yunfan,Peng Lixiao,Chen Jiahao,Bai Keyu
Abstract
Taking the Mongolian Plateau as the research area, this paper studied the vegetation growth from 2001 to 2018. We quantified the vegetation growth changes based on changes in gross primary productivity (GPP) and leaf area index (LAI) and their relationships to climate variables using correlation analysis, partial correlation analysis and multiple correlation analysis. The results showed that from 2001 to 2018 both GPP and LAI showed an increasing trend, with great heterogeneities among different areas and land cover types. The largest increase of GPP and LAI occurred in the northeast plateau with the land cover types of forest and cropland. The main driving factor of vegetation growth was precipitation, while temperature was significantly negatively correlated with vegetation growth. The CO2 concentration had a significant impact on the GPP in farmland, and the increase of solar radiation had a significant impact on tundra. Our study highlights the importance of precipitation in regulating vegetation growth in the Mongolian Plateau, challenging the prevailing views that the temperature dominates the vegetation growth in the northern ecosystems.
Funder
National Natural Science Foundation of China
Subject
General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献