A Proposed Ensemble Feature Selection Method for Estimating Forest Aboveground Biomass from Multiple Satellite Data

Author:

Zhang Yuzhen1ORCID,Liu Jingjing1ORCID,Li Wenhao1,Liang Shunlin2ORCID

Affiliation:

1. Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Geography, The University of Hong Kong, Hong Kong

Abstract

Feature selection (FS) can increase the accuracy of forest aboveground biomass (AGB) prediction from multiple satellite data and identify important predictors, but the role of FS in AGB estimation has not received sufficient attention. Here, we aimed to quantify the degree to which FS can benefit forest AGB prediction. To this end, we extracted a series of features from Landsat, Phased Array L-band Synthetic Aperture Radar (PALSAR), and climatic and topographical information, and evaluated the performance of four state-of-the-art FS methods in selecting predictive features and improving the estimation accuracy with selected features. We then proposed an ensemble FS method that takes inro account the stability of an individual FS algorithm with respect to different training datasets used; the heterogeneity or diversity of different FS methods; the correlations between features and forest AGB; and the multicollinearity between the selected features. We further investigated the performance of the proposed stability-heterogeneity-correlation-based ensemble (SHCE) method for AGB estimation. The results showed that selected features by SHCE provided a more accurate prediction of forest AGB than existing state-of-the-art FS methods, with R2 = 0.66 ± 0.01, RMSE = 14.35 ± 0.12 Mg ha−1, MAE = 9.34 ± 0.09 Mg ha−1, and bias = 1.67 ± 0.11 Mg ha−1 at 90 m resolution. Boruta yielded comparable prediction accuracy of forest AGB, but could not identify the importance of features, which led to a slightly greater bias than the proposed SHCE method. SHCE not only ranked selected features by importance but provided feature subsets that enabled accurate AGB prediction. Moreover, SHCE provides a flexible framework to combine FS results, which will be crucial in many scenarios, particularly the wide-area mapping of land-surface parameters from various satellite datasets.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3