Early Yield Forecasting of Maize by Combining Remote Sensing Images and Field Data with Logistic Models

Author:

Chang Hongfang12,Cai Jiabing12,Zhang Baozhong12,Wei Zheng12,Xu Di12

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. National Center for Efficient Irrigation Engineering and Technology Research-Beijing, Beijing 100048, China

Abstract

Early forecasting of crop yield from field to region is important for stabilizing markets and safeguarding food security. Producing a precise forecasting result with fewer inputs is an ongoing goal for the large-area yield evaluation. We present one approach of yield prediction for maize that was explored by incorporating remote-sensing-derived land surface temperature (LST) and field in-season data into a series of logistic models with only a few parameters. Continuous observation data of maize were utilized to calibrate and validate the corresponding logistic models for regional biomass estimating based on field temperatures (including crop canopy temperature (Tc)) and relative dry/fresh biomass accumulation. The LST maps from MOD11A1 products, which are considered to be matched as Tc in large irrigation districts, were assimilated into the validated models to estimate the biomass accumulation. It was found that the temporal-scale difference between the instantaneous LST and the daily average value of field-measured Tc was eliminated by data normalization method, indicating that the normalized LST could be input directly into the model as an approximation of the normalized Tc. Making one observed biomass in-season as the driving force, the maximum of dry/fresh biomass accumulation (DBA/FBA) at harvest could be estimated. Then, grain yield forecasting could be achieved according to the local harvest index of maize. Silage and grain yields were evaluated reasonably well compared with field observations based on the regional map of LST values obtained in 2017 in Changchun, Jilin Province, China. Here, satisfactory grain and silage yield forecasting was provided by assimilating once measured value of DBA/FBA at the middle growth period (early August) into the model in advance of harvest. Meanwhile, good results were obtained in the application of this approach using field data in 2016 to predict grain yield ahead of harvest in the Jiefangzha sub-irrigation district, Inner Mongolia, China. This study demonstrated that maize yield can be forecasted accurately prior to harvest by assimilating remote-sensing-derived LST and field data into the logistic models at a regional scale considering the spatio-temporal scale extension of ground information and crop dynamic growth in real time.

Funder

National Key Research Program

Project of National Natural Science Foundation of China

Institute-City Cooperation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3