Affiliation:
1. Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
Abstract
The accurate classification of single tree species in forests is important for assessing species diversity and estimating forest productivity. However, few studies have explored the influence of canopy morphological characteristics on the classification of tree species. Therefore, based on UAV LiDAR and hyperspectral data, in this study, we designed various classification schemes for the main tree species in the study area, i.e., birch, Manchurian ash, larch, Ulmus, and mongolica, in order to explore the effects of different data sources, classifiers, and canopy morphological features on the classification of a single tree species. The results showed that the classification accuracy of a single tree species using multisource remote sensing data was greater than that based on a single data source. The classification results of three different classifiers were compared, and the random forest and support vector machine classifiers exhibited similar classification accuracies, with overall accuracies above 78%. The BP neural network classifier had the lowest classification accuracy of 75.8%. The classification accuracy of all three classifiers for tree species was slightly improved when UAV LiDAR-extracted canopy morphological features were added to the classifier, indicating that the addition of canopy morphological features has a certain relevance for the classification of single tree species.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献