Fusion of airborne multimodal point clouds for vegetation parameter correction extraction in burned areas

Author:

He Rong,Dai Zhen,Zhu Guanghui,Bai Weisen

Abstract

Most experimental studies use unimodal data for processing, the RGB image point cloud cannot separate the shrub and tree layers according to the visible vegetation index, and the airborne laser point cloud is difficult to distinguish between the ground and grass ranges, to address the above problems, a multi-band information image fusing the LiDAR point cloud and the RGB image point cloud is constructed. In this study, data collected from UAV platforms, including RGB image point clouds and laser point clouds, were used to construct a fine canopy height model (using laser point cloud data) and high-definition digital orthophotos (using image point cloud data), and the orthophotos were fused with a canopy height model (CHM) by selecting the Difference Enhancement Vegetation Index (DEVI) and Normalised Green-Blue Discrepancy Index (NGBDI) after comparing the accuracy of different indices. Morphological reconstruction of CHM + DEVI/NGBDI fusion image, remove unreasonable values; construct training samples, using classification regression tree algorithm, segmentation of the range of the burned areas and adaptive extraction of vegetation as trees, shrubs and grasslands, tree areas as foreground markers using the local maximum algorithm to detect the tree apexes, the non-tree areas are assigned to be the background markers, and the Watershed Transform is performed to obtain the segmentation contour; the original laser point cloud is divided into chunks according to the segmented single-tree contour, and the highest point is traversed to search for the highest point, and corrected for the height of the single-tree elevations one by one. Accuracy analysis of the vegetation information extracted by the method with the measured data showed that the improved method increased the overall recall rate by 4.1%, the overall precision rate by 3.7%, the overall accuracy F1 score by 3.9%, and the tree height accuracy by 8.8%, 1.4%, 1.7%, 6.4%, 1.8%, and 0.3%, respectively, in the six sampling plots. The effectiveness of the improved method is verified, while the higher the degree of vegetation mixing in the region the better the extraction effect of the improved algorithm.

Funder

National Natural Science Foundation of China

Henan University of Science and Technology

Key Scientific Research Project of Colleges and Universities in Henan Province[China]

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3