Tree Segmentation and Parameter Measurement from Point Clouds Using Deep and Handcrafted Features

Author:

Wang Feiyu1ORCID,Bryson Mitch1ORCID

Affiliation:

1. Australian Centre for Field Robotics, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia

Abstract

Accurate measurement of the geometric parameters of trees is a vital part of forest inventory in forestry management. Aerial and terrestrial Light Detection and Ranging (LiDAR) sensors are currently used in forest inventory as an effective and efficient means of forest data collection. Many recent approaches to processing and interpreting this data make use of supervised machine learning algorithms such as Deep Neural Networks (DNNs) due to their advantages in accuracy, robustness and the ability to adapt to new data and environments. In this paper, we develop new approaches to deep-learning-based forest point cloud analysis that address key issues in real applications in forests. Firstly, we develop a point cloud segmentation framework that identifies tree stem points in individual trees and is designed to improve performance when labelled training data are limited. To improve point cloud representation learning, we propose a handcrafted point cloud feature for semantic segmentation which plays a complementary role with DNNs in semantics extraction. Our handcrafted feature can be integrated with DNNs to improve segmentation performance. Additionally, we combine this feature with a semi-supervised and cross-dataset training process to effectively leverage unlabelled point cloud data during training. Secondly, we develop a supervised machine learning framework based on Recurrent Neural Networks (RNNs) that directly estimates the geometric parameters of individual tree stems (via a stacked cylinder model) from point clouds in a data-driven process, without the need for a separate procedure for model-fitting on points. The use of a one-stage deep learning algorithm for this task makes the process easily adaptable to new environments and datasets. To evaluate our methods for both the segmentation and parameter estimation tasks, we use four real-world datasets of different tree species collected using aerial and terrestrial LiDAR. For the segmentation task, we extensively evaluate our method on the three different settings of supervised, semi-supervised, and cross-dataset learning, and the experimental results indicate that both our handcrafted point cloud feature and our semi-supervised and cross-dataset learning framework can significantly improve tree segmentation performance under all three settings. For the tree parameter estimation task, our DNN-based method performs comparably to well-established traditional methods and opens up new avenues for DNN-based tree parameter estimation.

Funder

National Institute for Forest Production Innovation

University of Sydney

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3