Affiliation:
1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
2. Inner Mongolia Huarui Electric Power Technology Development Co., Ltd., Tongliao 029300, China
Abstract
In recent years, a large number of countries have connected and distributed photovoltaics in remote rural areas, aiming to promote the use of clean energy in rural areas. The solar energy that is not used in time needs to be discarded, resulting in a large amount of wasted energy. Rural areas are closely related to agricultural production, and solar energy can be used for agricultural nitrogen fixation to supplement the nitrogen needed by crops and effectively use the upcoming waste of solar energy. A photovoltaic-driven plasma reactor for nitrogen fixation in agriculture was designed in this study. The air inlet and outlet holes are arranged above and below the reactor to facilitate air entry and directly interact with the gliding arc generated at the bottom of the electrode to achieve atmospheric nitrogen fixation in agriculture. The characteristics of gliding arc development in the process of nitrogen fixation in agriculture were studied experimentally. There are two discharge modes of the gliding arc discharge: one is steady arc gliding mode (A-G Mode), and the other is breakdown gliding mode (B-G Mode). By collecting discharge signals, different discharge modes of gliding arc discharge were analyzed, and the effect of the air flow rate on the discharge period and discharge mode ratio distribution is discussed. The effects of the air flow rate on the yield, specific energy input, and energy consumption in plasma agriculture were studied. The experimental results show that with an increase in the air flow rate, the B-G mode takes up a larger proportion and the gliding arc discharge period is shortened. However, the higher the proportion of the B-G mode, the more unfavorable the production of nitrogen oxides. Although the nitrogen oxides generated by the system are not particularly excellent compared with the Haber-Bosch ammonia process (H-B process), the access to distributed photovoltaic roofs in rural and remote areas can effectively use available resources like water, air, and solar, and avoid energy waste in areas where wind and solar are abandoned.
Funder
Scientific Research Project of the Education Department of Liaoning Province
Inner Mongolia Autonomous Region Science and Technology Innovation Guidance Award Fund Project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献