Structure Optimization of Gliding Arc Electrodes for Seed Treatment Based on the Study of Plasma Distribution Characteristics

Author:

Hao Linjie1,You Yong1ORCID,Hui Yunting1,Wang Decheng1,Shao Changyong12

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Shandong Province Seeds Group Co., Ltd., Jinan 250100, China

Abstract

Plasma seed pretreatment is an important means to rapidly improve seed quality. The studies on plasma-generating devices suitable for continuous seed pretreatment at atmospheric pressure have been relatively limited. Gliding arc discharge can generate atmospheric pressure plasma at room temperature, which provides a new way to use plasma to treat seeds at ambient temperature and pressure. By analyzing the influence of structural characteristics, such as gliding arc electrode shape, discharge distance, and electrode opening angle on plasma distribution, a plasma seed treatment method based on negative pressure guidance was proposed, and the electrode structure was optimized. The results show that the reasonable matching of electrode structure parameters can improve the gliding arc guiding ability of the discharge electrode. Comparing the three electrode shapes, it was found that the triangular electrode had the best gliding arc guiding ability, and it had the potential to further increase the plasma size with the increase in the electrode size. The discharge distance and electrode opening angle had a significant impact on the gliding arc guiding ability of the discharge electrode. When the discharge distance was 15 mm and the electrode opening angle was 76°, the structure parameters of the plasma seed treatment electrode were matched with each other, and the best processing capacity was achieved. After 10 s of gliding arc plasma treatment with the optimized triangular electrode structure, the seed germination rate and germination index of Leymus chinensis ((Trin.) Tzvel) increased by 33.3% and 13.8%. This study provides a theoretical basis for the design and optimization of gliding arc electrode structures and serves as a reference for the research and development of plasma generators for continuous seed treatment at atmospheric pressure.

Funder

National Key R&D Program of China

China Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3