Extracellular Histones Trigger Disseminated Intravascular Coagulation by Lytic Cell Death

Author:

Zhang Yan,Wu CongqingORCID,Li Lan,Pandeya AnkitORCID,Zhang Guoying,Cui JianORCID,Kirchhofer Daniel,Wood Jeremy P.,Smyth Susan S.,Wei YinanORCID,Li Zhenyu

Abstract

Histones are cationic nuclear proteins that are essential for the structure and functions of eukaryotic chromatin. However, extracellular histones trigger inflammatory responses and contribute to death in sepsis by unknown mechanisms. We recently reported that inflammasome activation and pyroptosis trigger coagulation activation through a tissue-factor (TF)-dependent mechanism. We used a combination of various deficient mice to elucidate the molecular mechanism of histone-induced coagulation. We showed that histones trigger coagulation activation in vivo, as evidenced by coagulation parameters and fibrin deposition in tissues. However, histone-induced coagulopathy was neither dependent on intracellular inflammasome pathways involving caspase 1/11 and gasdermin D (GSDMD), nor on cell surface receptor TLR2- and TLR4-mediated host immune response, as the deficiency of these genes in mice did not protect against histone-induced coagulopathy. The incubation of histones with macrophages induced lytic cell death and phosphatidylserine (PS) exposure, which is required for TF activity, a key initiator of coagulation. The neutralization of TF diminished the histone-induced coagulation. Our findings revealed lytic cell death as a novel mechanism of histone-induced coagulation activation and thrombosis.

Funder

NIH/NIGMS

National Science Foundation

National Institutes of Health

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3