Vibrations of Misaligned Rotor System with Hysteretic Friction Arising from Driveshaft–Stator Contact under Dispersed Viscous Fluid Influences

Author:

Tchomeni Bernard XavierORCID,Alugongo Alfayo

Abstract

Dynamic analysis of a combination of misaligned rotors, the disturbance of the Cardan joint and the rotor–stator rubbing within a restricted clearance space in a viscous fluid is complex and can result in persistent vibration anomalies that are often misunderstood. It becomes increasingly important to gain some insights into how the transmission of coupled motion responds dynamically under a variety of conditions. This paper introduces an efficient simulation of the misaligned multi-degree-of-freedom rotor’s model, which was developed to predict the transient dynamic behaviours of a driveshaft deflection. The model accounts for tight clearance as a function of contact deformation according to nonlinear Hertzian contact theory. The paper also examines recent research by considering the influence of parameters such as eccentric masses, applied torques and flexible coupling joint perturbation introduced in the proposed rotor system. The simulation results indicated that the viscous fluid surrounding the driveshaft had sufficient torsional flexibility to dampen the rubbing impact to the driven shaft displacement. In addition, the torsional fluctuations of the flexible coupling abruptly increased, and then significantly impacted the vibration of the submerged driveshaft. Parametric studies involving the interconnected rotor models indicated that the effects of fluid on a close-bounds contact area can create partial disturbance reduction. The high rubbing contact is shown to be lost through the Hooke’s joints during power transmission. The speed-frequency spectrum maps provide valuable information on all the modelled excitations over the frequency of the twice-running speed resonance in a viscous medium. Further, nonlinear characteristics are reconstructed through orbit shapes and can be adopted in the condition monitoring of rotors in engineering practice.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3