Nonlinear numerical and experimental study on the second-order torsional and lateral vibration of driveline system connected by cardan joint

Author:

Xia Yuanfeng123ORCID,Pang Jian123,Yang Liang123,Zhao Qin123,Yang Xianwu23

Affiliation:

1. Department of Automotive Engineering, Chongqing University, China

2. State Key Laboratory of Vehicle NVH and Safety Technology, China

3. Changan Auto Global R&D Centre, China

Abstract

In this article, a nonlinear dynamic model with five degrees-of-freedom for a four-wheel-drive vehicle driveline connected by a cardan joint, including dynamic intersection angle, nonconstant velocity, and additional moment caused by the cardan joint, is established by using the Lagrange method to analyze the driveline coupling vibration in both torsional and lateral directions. High-order Runge–Kutta algorithm is applied to solve the differential equations and to calculate transient responses of the driveline rotors under acceleration condition. The color maps and second-order vibration of the driveline are acquired by frequency spectrum analysis and order tracking analysis, respectively. The second-order vibration and noise of the driveline and vehicle interior caused by the cardan joint is validated by vehicle experimental results and reduced effectively by decreasing intersection angle of the cardan joint under the operational condition. Moreover, application of a flexible coupling instead of the cardan joint significantly reduces the second-order vibration but simultaneously generates low-level third-order vibration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3