Affiliation:
1. Department of Automotive Engineering, Chongqing University, China
2. State Key Laboratory of Vehicle NVH and Safety Technology, China
3. Changan Auto Global R&D Centre, China
Abstract
In this article, a nonlinear dynamic model with five degrees-of-freedom for a four-wheel-drive vehicle driveline connected by a cardan joint, including dynamic intersection angle, nonconstant velocity, and additional moment caused by the cardan joint, is established by using the Lagrange method to analyze the driveline coupling vibration in both torsional and lateral directions. High-order Runge–Kutta algorithm is applied to solve the differential equations and to calculate transient responses of the driveline rotors under acceleration condition. The color maps and second-order vibration of the driveline are acquired by frequency spectrum analysis and order tracking analysis, respectively. The second-order vibration and noise of the driveline and vehicle interior caused by the cardan joint is validated by vehicle experimental results and reduced effectively by decreasing intersection angle of the cardan joint under the operational condition. Moreover, application of a flexible coupling instead of the cardan joint significantly reduces the second-order vibration but simultaneously generates low-level third-order vibration.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献