Repetitive Learning Sliding Mode Stabilization Control for a Flexible-Base, Flexible-Link and Flexible-Joint Space Robot Capturing a Satellite

Author:

Fu Xiaodong,Ai HaipingORCID,Chen Li

Abstract

During the process of satellite capture by a flexible base–link–joint space robot, the base, joints, and links vibrate easily and also rotate in a disorderly manner owing to the impact torque. To address this problem, a repetitive learning sliding mode stabilization control is proposed to stabilize the system. First, the dynamic models of the fully flexible space robot and the captured satellite are established, respectively, and the impact effect is calculated according to the motion and force transfer relationships. Based on this, a dynamic model of the system after capturing is established. Subsequently, the system is decomposed into slow and fast subsystems using the singular perturbation theory. To ensure that the base attitude and the joints of the slow subsystem reach the desired trajectories, link vibrations are suppressed simultaneously, and a repetitive learning sliding mode controller based on the concept of the virtual force is designed. Moreover, a multilinear optimal controller is proposed for the fast subsystem to suppress the vibration of the base and joints. Two sub-controllers constitute the repetitive learning sliding mode stabilization control for the system. This ensures that the base attitude and joints of the system reach the desired trajectories in a limited time after capturing, obtain better control quality, and suppress the multiple flexible vibrations of the base, links and joints. Finally, the simulation results verify the effectiveness of the designed control strategy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3