An Efficient Pose Estimation Algorithm for Non-Cooperative Space Objects Based on Dual-Channel Transformer

Author:

Ye Ruida1,Ren Yuan2,Zhu Xiangyang1,Wang Yujing2,Liu Mingyue1,Wang Lifen1

Affiliation:

1. Department of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China

2. Department of Basic Course, Space Engineering University, Beijing 101416, China

Abstract

Non-cooperative space object pose estimation is a key technique for spatial on-orbit servicing, where pose estimation algorithms based on low-quality, low-power monocular sensors provide a practical solution for spaceborne applications. The current pose estimation methods for non-cooperative space objects using monocular vision generally consist of three stages: object detection, landmark regression, and perspective-n-point (PnP) solver. However, there are drawbacks, such as low detection efficiency and the need for prior knowledge. To solve the above problems, an end-to-end non-cooperative space object pose estimation learning algorithm based on dual-channel transformer is proposed, a feature extraction backbone network based on EfficientNet is established, and two pose estimation subnetworks based on transformer are also established. A quaternion SoftMax-like activation function is designed to improve the precision of orientation error estimating. The method only uses RGB images, eliminating the need for a CAD model of the satellite, and simplifying the detection process by using an end-to-end network to directly detect satellite pose information. Experiments are carried out on the SPEED dataset provided by the European Space Agency (ESA). The results show that the proposed algorithm can successfully predict the satellite pose information and effectively decouple the spatial translation information and orientation information, which significantly improves the recognition efficiency compared with other methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3