Deep Learning for COVID-19 Diagnosis from CT Images

Author:

Loddo AndreaORCID,Pili Fabio,Di Ruberto CeciliaORCID

Abstract

COVID-19, an infectious coronavirus disease, caused a pandemic with countless deaths. From the outset, clinical institutes have explored computed tomography as an effective and complementary screening tool alongside the reverse transcriptase-polymerase chain reaction. Deep learning techniques have shown promising results in similar medical tasks and, hence, may provide solutions to COVID-19 based on medical images of patients. We aim to contribute to the research in this field by: (i) Comparing different architectures on a public and extended reference dataset to find the most suitable; (ii) Proposing a patient-oriented investigation of the best performing networks; and (iii) Evaluating their robustness in a real-world scenario, represented by cross-dataset experiments. We exploited ten well-known convolutional neural networks on two public datasets. The results show that, on the reference dataset, the most suitable architecture is VGG19, which (i) Achieved 98.87% accuracy in the network comparison; (ii) Obtained 95.91% accuracy on the patient status classification, even though it misclassifies some patients that other networks classify correctly; and (iii) The cross-dataset experiments exhibit the limitations of deep learning approaches in a real-world scenario with 70.15% accuracy, which need further investigation to improve the robustness. Thus, VGG19 architecture showed promising performance in the classification of COVID-19 cases. Nonetheless, this architecture enables extensive improvements based on its modification, or even with preprocessing step in addition to it. Finally, the cross-dataset experiments exposed the critical weakness of classifying images from heterogeneous data sources, compatible with a real-world scenario.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3