Automated COVID-19 detection with convolutional neural networks

Author:

Dumakude Aphelele,Ezugwu Absalom E.

Abstract

AbstractThis paper focuses on addressing the urgent need for efficient and accurate automated screening tools for COVID-19 detection. Inspired by existing research efforts, we propose two framework models to tackle this challenge. The first model combines a conventional CNN architecture as a feature extractor with XGBoost as the classifier. The second model utilizes a classical CNN architecture with a Feedforward Neural Network for classification. The key distinction between the two models lies in their classification layers. Bayesian optimization techniques are employed to optimize the hyperparameters of both models, enabling a “cheat-start” to the training process with optimal configurations. To mitigate overfitting, transfer learning techniques such as Dropout and Batch normalization are incorporated. The CovidxCT-2A dataset is used for training, validation, and testing purposes. To establish a benchmark, we compare the performance of our models with state-of-the-art methods reported in the literature. Evaluation metrics including Precision, Recall, Specificity, Accuracy, and F1-score are employed to assess the efficacy of the models. The hybrid model demonstrates impressive results, achieving high precision (98.43%), recall (98.41%), specificity (99.26%), accuracy (99.04%), and F1-score (98.42%). The standalone CNN model exhibits slightly lower but still commendable performance, with precision (98.25%), recall (98.44%), specificity (99.27%), accuracy (98.97%), and F1-score (98.34%). Importantly, both models outperform five other state-of-the-art models in terms of classification accuracy, as demonstrated by the results of this study.

Funder

North-West University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Huang, E. et al. Can computed tomography be a primary tool for COVID-19 detection? Evidence appraisal through meta454 analysis. Crit. Care 24, 1–3 (2020).

2. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3(3), 199–217 (2020).

3. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014).

4. Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (2015).

5. Wolpert, D. Stacked generalization. Neural Netw. 5(2), 241–259 (1992).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3