Author:
Dumakude Aphelele,Ezugwu Absalom E.
Abstract
AbstractThis paper focuses on addressing the urgent need for efficient and accurate automated screening tools for COVID-19 detection. Inspired by existing research efforts, we propose two framework models to tackle this challenge. The first model combines a conventional CNN architecture as a feature extractor with XGBoost as the classifier. The second model utilizes a classical CNN architecture with a Feedforward Neural Network for classification. The key distinction between the two models lies in their classification layers. Bayesian optimization techniques are employed to optimize the hyperparameters of both models, enabling a “cheat-start” to the training process with optimal configurations. To mitigate overfitting, transfer learning techniques such as Dropout and Batch normalization are incorporated. The CovidxCT-2A dataset is used for training, validation, and testing purposes. To establish a benchmark, we compare the performance of our models with state-of-the-art methods reported in the literature. Evaluation metrics including Precision, Recall, Specificity, Accuracy, and F1-score are employed to assess the efficacy of the models. The hybrid model demonstrates impressive results, achieving high precision (98.43%), recall (98.41%), specificity (99.26%), accuracy (99.04%), and F1-score (98.42%). The standalone CNN model exhibits slightly lower but still commendable performance, with precision (98.25%), recall (98.44%), specificity (99.27%), accuracy (98.97%), and F1-score (98.34%). Importantly, both models outperform five other state-of-the-art models in terms of classification accuracy, as demonstrated by the results of this study.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Huang, E. et al. Can computed tomography be a primary tool for COVID-19 detection? Evidence appraisal through meta454 analysis. Crit. Care 24, 1–3 (2020).
2. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3(3), 199–217 (2020).
3. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014).
4. Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (2015).
5. Wolpert, D. Stacked generalization. Neural Netw. 5(2), 241–259 (1992).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献